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Motivation

Scalar valued stochastic processes are well studied, i.e. random functions
f: X —>Roreven f: X - R" = = =
If we want to model functions whose outputs are vector valued, or higher-order tensors, we can still model these as

functions A
>
f:X—-R"
but we have the additional baggage of choosing a basis to be able to represent the vector values as a series of scalars. \ \ \
» Choice of basis is arbitrary » Choice of coordinate frame is arbitrary (1,1) at (1,1) %;;2‘[,_25) at (0.5,1)
— Shouldn’t affect our inference — Shouldn’t affect our inference
Figure 1: A change of basis and coordinate system changes

The is strongly related to the physical principle of the homogeneity of space and the symmetry of natural laws. how we represent the location and value of a vector.

Changing Coordinate System Equivariant Gaussian Processes

Changes of coordinate system in R™ form a group, the Euclidean group E(n). Every
element can be written as

g=tr, g€ EMm),teT(n)reSOMn)
Changes of basis (for orthogonal, same-handed bases) on R™ also form a group, SO(n).

Theorem 1
A Gaussian process GP(m, K) is G-invariant, equivalently the posterior G-
equivariant, if and only if

1. Forallx e R™, g € G,

» Scalar functions, f : R™ — R, transform like
(@) m(x) =m

g-fl@)=flg™"-z)

(b) p(r)m =m
» Vector valued functions transform Llike 2. Forallx,x’ e R",g e G
g-f@)=p(r)flg~ -z) forg=tr @) K(x,x')=K(x—-x,0):= K(x —x')
with (b) K (rx,7-x) = p(h)K (x,x')p(r) "
p:G—=R¥ p(g1)p(g2) = plgs - g2)
F(z) F(g~'x) p(h)F (g~ x)
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Equivariant DeepSets

We can characterise all functions of the form

If we have a stochastic process ' ~ P, the we can define the transform stochastic process Z v fz subjectto fy.z(z)=p(r)fz (g7 )
g - P as the distribution of g - F.

Stochastic Process Conditions

These are functions that take some set of points, and produce a field, i.e. a function that

. . . . can be evaluated anywhere. Any such function can be expressed as
Write the posterior map conditioned on some observations Z = {(z;,y;)}}-; as Z — Py

fy=D Xn:K( ) Yi subiect to K is an equivariant kernel
Two natural implications of the independance from coordinate systems and bases: z= p »&i) 1 ! D is an equivariant map between fields
» The prior should be invariant, g- P = P Vg € G

» The posterior map should be equivariant, Py.; = g- Pz Vg € G Equivariant Conditional Neural Processes

Neural Processes are approximations to stochastic processes. They directly learn an ap-
proximate posterior map Qz ~ Pz, implicitly learning a prior from data

Building on proposition 1, we should ensure this approximation is equivariant.

Conditional Neural Process models learn the marginals of each location, in this case a
Gaussian marginal, parametrised by mean and covariance functions.

Qz = N(uz(x),Ez(z))
To ensure this approximation is equivariant, we need the mean and covariance maps to
be equivariant

Proposition 1 pg.z(x) = p(r)pz(g-z) Egz(z) = p(r)Ez(g-@)p(r)"

Context Set Embedding Discretisation Predictions Target Set
= =

Invariant Prior <= Equivariant Posterior Map (1)
g-P=PVge (G < F,72=9PzV9€CG (2)

MNIST Image Experiments

Context GP MCN’PS)T cr&" b\l'ICS’%P Smafrwcbhfl';(TC“EJ E R A5 W h E .
Train dataset MNIST rotMNIST MNIST eather Xperlments
Test dataset MNIST MNIST extMNIST
Model Region Wind in m/s
Model us China
GP 0.3940.30 0.3940.30 0.724+0.17
CNP 0.7640.05 0.66+0.06 -1.114+0.06 GP 0.386+0.005 -0.75540.001
ConvCNP 1.014+0.01 0.95+0.01 1.084+0.02 CNP 0.001+0.017 -2.45640.365
ConvCNP 0.898+0.045 -0.8904+0.059

SteerCNP(Cy) 1.05+0.02 1.02+0.03 1.1440.02

SteerCNP(Cg) 1.07+0.03 1.05+0.04 1.16+0.03

SteerCNP(C'16)  1.08+0.03  1.04+0.03 1.174+0.05

SteerCNP(Dy) 1.08+0.03  1.05+0.03 1.14+0.03
(Ds)

SteerCNP(Dg 1.08+0.03  1.04+0.04 1.17+0.02

SteerCNP (Cy) 1.255+0.019  -0.578+0.173
SteerCNP (C5g) 1.038+0.026  -0.582+0.104
SteerCNP (C16) 1.094+0.015  -0.550+0.073 :
SteerCNP (Dy) 1.037+0.037  -0.429+0.067 40

SteerCNP (Dg) 1.032+0.011  -0.539+0.129 X —

Figure 3: Example regic;n and wind Fna|3

Table 1: MNIST completion results Figure 2: Example inferences Tl 2 Weafier aempleien reaulis



