

Equivariant Learning of Stochastic Fields

Peter Holderrieth^{*†}, Michael Hutchinson^{*†}, Yee Whye Teh^{†‡} † Department of Statistics, University of Oxford, ‡ Deepind, London UNIVERSITY OF OXFORD

Motivation

Scalar valued stochastic processes are well studied, i.e. random functions

 $f: \mathcal{X} \to \mathbb{R}$ or even $f: \mathcal{X} \to \mathbb{R}^n$

If we want to model functions whose outputs are **vector** valued, or higher-order tensors, we can still model these as functions

 $f: \mathcal{X} \to \mathbb{R}^n$

but we have the additional baggage of choosing a **basis** to be able to represent the vector values as a series of scalars.

- Choice of basis is arbitrary
- \implies Shouldn't affect our inference
- Choice of coordinate frame is arbitrary
- ⇒ Shouldn't affect our inference

The is strongly related to the physical principle of the **homogeneity of space** and the symmetry of natural laws.

Changes of coordinate system in \mathbb{R}^n form a group, the Euclidean group E(n). Every element can be written as

 $g = tr, \quad g \in E(n), \ t \in T(n) \ r \in SO(n)$

Changes of basis (for orthogonal, same-handed bases) on \mathbb{R}^n also form a group, SO(n).

• Scalar functions, $f : \mathbb{R}^n \to \mathbb{R}$, transform like

$$g \cdot f(x) = f(g^{-1} \cdot x)$$

► Vector valued functions transform like

$$g \cdot f(x) =
ho(r) f(g^{-1} \cdot x)$$
 for $g = t q$

with

$$\rho: G \to \mathbb{R}^{d \times d} \quad \rho(g_1)\rho(g_2) = \rho(g_1 \cdot g_2)$$

F(x)						$F(g^{-1}x)$					$\rho(h)F(g^{-1}x)$													
1	1	1	1	1	1	1		-	•	*	*	ħ	ħ	ł	1	1	4		*	*	-	*	-	-
1 1	1 1	↑ 	_↑ 	1	1	1		Ĩ	1		*	*	*	1	t		:	Ĭ		1	-	-	+	+
h		٨		4	4	1				*	٨	٨	4	1	t	1				-	-	+	+	-
	*	*	*	4	4	4				4	4	4	4	1	Ť		2	•	-	1	-	*	+	+
•	•	•	*		•					4	4	4	4	1	1		•		-	-		-	Ţ	-
`	`	1		<	*	-			Ĭ	1	1	1	1	1	1		١	•	*	•	*	*	*	*

Stochastic Process Conditions

If we have a stochastic process $F \sim P$, the we can define the transform stochastic process $g \cdot P$ as the distribution of $g \cdot F$.

Write the posterior map conditioned on some observations $Z = \{(x_i, y_i)\}_{i=1}^n$ as $Z \mapsto P_Z$

Two natural implications of the independance from coordinate systems and bases:

- ▶ The prior should be invariant, $g \cdot P = P \; \forall g \in G$
- ▶ The *posterior map* should be *equivariant*, $P_{g \cdot Z} = g \cdot P_Z \ \forall g \in G$

Equivariant Gaussian Processes

Figure 4: Example RBF, divergence free, and curl free equivariant Guassian Processes

Equivariant DeepSets

We can characterise all functions of the form

Z

$$\mapsto f_Z$$
 subject to $f_{g \cdot Z}(x) = \rho(r) f_Z(g^{-1} \cdot x)$

These are functions that take some set of points, and produce a *field*, i.e. a function that can be evaluated anywhere. Any such function can be expressed as

$$f_Z = D\left(\sum_{i=1}^n K(\cdot, x_i) \begin{bmatrix} y_i \\ 1 \end{bmatrix}\right)$$
 subject to

 $\begin{cases} K \text{ is an equivariant kernel} \\ D \text{ is an equivariant map between fields} \end{cases}$

Equivariant Conditional Neural Processes

Neural Processes are *approximations* to stochastic processes. They directly learn an approximate posterior map $Q_Z \approx P_Z$, implicitly learning a prior from data

Building on proposition 1, we should ensure this approximation is *equivariant*.

Conditional Neural Process models learn the marginals of each location, in this case a Gaussian marginal, parametrised by mean and covariance functions.

$$Q_Z = \mathcal{N}(\mu_Z(x), \Sigma_Z(x))$$

To ensure this approximation is equivariant, we need the mean and covariance maps to

(1,1) at (1,1)

Figure 1: A change of basis and coordinate system changes how we represent the location and value of a vector.

Proposition 1

Invariant Prior	\iff	Equivariant Posterior Map	(1)
$g\cdot P = P \; \forall g \in G \; \prec \;$	\Leftrightarrow	$P_{g.Z} = g.P_Z \; \forall g \in G$	(2)

MNIST Image Experiments

Train dataset Test dataset Model	MNIST MNIST	rotMNIST MNIST	MNIST extMNIST
GP	$0.39 {\pm} 0.30$	$0.39{\pm}0.30$	0.72±0.17
CNP	$0.76 {\pm} 0.05$	$0.66{\pm}0.06$	-1.11±0.06
ConvCNP	$1.01 {\pm} 0.01$	$0.95{\pm}0.01$	1.08±0.02
SteerCNP(C_4)	1.05 ± 0.02	1.02 ± 0.03	1.14 ± 0.02
SteerCNP(C_8)	1.07 \pm 0.03	1.05 ± 0.04	1.16 \pm 0.03
SteerCNP(C_{16})	1.08 \pm 0.03	1.04 ± 0.03	1.17 \pm 0.05
SteerCNP(D_4)	1.08 \pm 0.03	1.05 ± 0.03	1.14 \pm 0.03
SteerCNP(D_8)	1.08 \pm 0.03	1.04 ± 0.04	1.17 \pm 0.02

Table 1: MNIST completion results

	Context	GP	CNP MNIST	ConvCNP MNIST	MNIST
0/4 m		$\mathcal{F}_{\mathcal{F}}$	9	7	7
1/4π		i in	5	1	1
2/4 n		1	¢.	ĸ	7
3/4 п		ч÷.,	1	\$	5

Figure 2: Example inferences

be equivariant

 $\mu_{g \cdot Z}(x) = \rho(r)\mu_Z(g \cdot x) \quad \Sigma_{g \cdot Z}(x) = \rho(r)\Sigma_Z(g \cdot x)\rho(r)^{-1}$

ERA5 Weather Experiments

Model	US	China
GP CNP ConvCNP	$\begin{array}{c} 0.386 {\pm} 0.005 \\ 0.001 {\pm} 0.017 \\ 0.898 {\pm} 0.045 \end{array}$	-0.755±0.001 -2.456±0.365 -0.890±0.059
SteerCNP (C_4) SteerCNP (C_8) SteerCNP (C_{16}) SteerCNP (D_4)	$\begin{array}{c} \textbf{1.255} {\pm} 0.019 \\ 1.038 {\pm} 0.026 \\ 1.094 {\pm} 0.015 \\ 1.037 {\pm} 0.037 \end{array}$	$\begin{array}{c} \text{-0.578} {\pm} 0.173 \\ \text{-0.582} {\pm} 0.104 \\ \text{-0.550} {\pm} 0.073 \\ \textbf{-0.429} {\pm} 0.067 \end{array}$
SteerCNP (D_8)	1.032 ± 0.011	-0.539 ± 0.129

Table 2: Weather completion results

Figure 3: Example region and wind map