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Motivation

Scalar valued stochastic processes are well studied, i.e. random functions
f : X → R or even f : X → Rn

If we want to model functions whose outputs are vector valued, or higher-order tensors, we can still model these as
functions

f : X → Rn

but we have the additional baggage of choosing a basis to be able to represent the vector values as a series of scalars.

• Choice of basis is arbitrary
=⇒ Shouldn’t affect our inference

• Choice of coordinate frame is arbitrary
=⇒ Shouldn’t affect our inference

The is strongly related to the physical principle of the homogeneity of space and the symmetry of natural laws.
Figure 1: A change of basis and coordinate system changes
how we represent the location and value of a vector.

MNIST Image Experiments

Train dataset MNIST rotMNIST MNIST
Test dataset MNIST MNIST extMNIST
Model

GP 0.39±0.30 0.39±0.30 0.72±0.17
CNP 0.76±0.05 0.66±0.06 -1.11±0.06
ConvCNP 1.01±0.01 0.95±0.01 1.08±0.02

SteerCNP(C4) 1.05±0.02 1.02±0.03 1.14±0.02
SteerCNP(C8) 1.07±0.03 1.05±0.04 1.16±0.03
SteerCNP(C16) 1.08±0.03 1.04±0.03 1.17±0.05
SteerCNP(D4) 1.08±0.03 1.05±0.03 1.14±0.03
SteerCNP(D8) 1.08±0.03 1.04±0.04 1.17±0.02

Table 1: MNIST completion results
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Figure 2: Example inferences

ERA5 Weather Experiments

Model US China

GP 0.386±0.005 -0.755±0.001
CNP 0.001±0.017 -2.456±0.365
ConvCNP 0.898±0.045 -0.890±0.059

SteerCNP (C4) 1.255±0.019 -0.578±0.173
SteerCNP (C8) 1.038±0.026 -0.582±0.104
SteerCNP (C16) 1.094±0.015 -0.550±0.073
SteerCNP (D4) 1.037±0.037 -0.429±0.067
SteerCNP (D8) 1.032±0.011 -0.539±0.129

Table 2: Weather completion results
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Figure 3: Example region and wind map

Changing Coordinate System

Changes of coordinate system in Rn form a group, the Euclidean group E(n). Every
element can be written as

g = tr, g ∈ E(n), t ∈ T (n) r ∈ SO(n)

Changes of basis (for orthogonal, same-handed bases) on Rn also form a group, SO(n).

I Scalar functions, f : Rn → R, transform like
g · f(x) = f(g−1 · x)

I Vector valued functions transform like
g · f(x) = ρ(r)f(g−1 · x) for g = tr

with
ρ : G→ Rd×d ρ(g1)ρ(g2) = ρ(g1 · g2)

Stochastic Process Conditions

If we have a stochastic process F ∼ P , the we can define the transform stochastic process
g · P as the distribution of g · F .

Write the posterior map conditioned on some observations Z = {(xi, yi)}ni=1 as Z 7→ PZ

Two natural implications of the independance from coordinate systems and bases:

I The prior should be invariant, g · P = P ∀g ∈ G
I The posterior map should be equivariant, Pg·Z = g · PZ ∀g ∈ G

Proposition 1

Invariant Prior ⇐⇒ Equivariant Posterior Map (1)
g · P = P ∀g ∈ G ⇐⇒ Pg.Z = g.PZ ∀g ∈ G (2)

Equivariant Conditional Neural Processes

Neural Processes are approximations to stochastic processes. They directly learn an ap-
proximate posterior map QZ ≈ PZ , implicitly learning a prior from data

Building on proposition 1, we should ensure this approximation is equivariant.

Conditional Neural Process models learn the marginals of each location, in this case a
Gaussian marginal, parametrised by mean and covariance functions.

QZ = N (µZ(x),ΣZ(x))

To ensure this approximation is equivariant, we need the mean and covariance maps to
be equivariant

µg·Z(x) = ρ(r)µZ(g · x) Σg·Z(x) = ρ(r)ΣZ(g · x)ρ(r)−1

Context Set Embedding Discretisation Predictions
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Equivariant DeepSets

We can characterise all functions of the form
Z 7→ fZ subject to fg·Z(x) = ρ(r)fZ(g−1 · x)

These are functions that take some set of points, and produce a field, i.e. a function that
can be evaluated anywhere. Any such function can be expressed as

fZ = D

(
n∑

i=1

K(·, xi)
[
yi
1

])
subject to

{
K is an equivariant kernel
D is an equivariant map between fields

Equivariant Gaussian Processes

Theorem 1

A Gaussian process GP(m,K) is G-invariant, equivalently the posterior G-
equivariant, if and only if

1. For all x ∈ Rn, g ∈ G,
(a) m(x) = m
(b) ρ(r)m = m

2. For all x,x′ ∈ Rn, g ∈ G
(a) K(x,x′) = K(x− x′,0) := K̂(x− x′)
(b) K(r · x, r · x′) = ρ(h)K(x,x′)ρ(r)−1

Figure 4: Example RBF, divergence free, and curl free equivariant Guassian Processes


