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Gaussian processes are machine learning models capable of learning unknown func- Basis coefficients Frame Vector field True dynamics Uncertainty
tions in a way that represents uncertainty, thereby facilitating construction of opti- 3 mesessois o
mal decision-making systems. Motivated by a desire to deploy Gaussian processes oo g -
in novel areas of science, a rapidly-growing line of research has focused on con- ¥ Mt N = § g
structively extending these models to handle non-Euclidean domains, including X y \ /,' - '.‘ \,\ % g 'E T g
Riemannian manifolds, such as spheres and tori. We propose techniques that gener- ".’-,\ Ly 2 e \\ / ’,';"\ = =2
alize this class to model vector fields on Riemannian manifolds, which are important — — \1 \ - \\ r '/;:‘, g o EeTEET T 0
in a number of application areas in the physical sciences. To do so, we present a a C—}\‘ ) ’\ ’ (_‘;7 Sl et ki
general recipe for constructing gauge independent kernels, which induce Gaussian L \\ i . ,’,ﬁ,’:\. y 3 e 9
vector fields, i.e. vector-valued Gaussian processes coherent with geometry, from X iJ W 0 4 [P R S -
scalar-valued Riemannian kernels. We extend standard Gaussian process training \% E £ g
methods, such as variational inference, to this setting. This enables vector-valued — § 0 3% Q B
Gaussian processes on Riemannian manifolds to be trained using standard methods S = §
2l EES s SFResible 1 metine (CEmiig praciomnsss: Frame: simultaneous systems of coordinates chosen in all tangent spaces 3 TTTTESSET IS 0
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Proposition. Every cross-covariance kernel can be represented in a frame as an 0 T ar 0 T 2m 0 200 40,0 600 800 1000
Manifold X smooth geometric space where rules of calculus apply Different frames ~ different representations as matrices Figure 1: An ideal pendulum with pivot friction has a state space that is a cylinder,
Tangent space 7, X vector space of all directions one can move at z € X [0,27] x R. Taking into account the geometry ensures no discontinuity at 27, and
Tangent bundle 7X manifold obtained by gluing together all tangent spaces facilitates stable long term predictions.
Cotangent bundle 7* X similar, but glue together dual spaces of tangent spaces Projected Kernels
Vector field f f: X = TX st arrow f(z) € TX matches point x € X

Scalar processes Embedded process Projected process Weather Modelling
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Gaussian Vector Fields and Cross-covariance Kernels

A vector fieldisamap f : X — T X between manifolds: range is not a vector space.
= need an appropriate notion of Gaussianity for bundles

Idea: construct Gaussian vector field by the following steps.

(1) Embed scalar-valued Gaussian processes into a higher-dim. space R
Definition. A random vector field f is Gaussian if for any points z1,...,z, € X on 2 A ; - d

peocs ssemble them into a vector-valued Gaussian process f : X — R%,
the manifold, the vectors f(x1), .., f(zn) € Ty, X ©..®T,, X attached to them are @) I Y Vet SR f

jointly Gaussian, where @ is the vector direct sum. (3) Project onto the tangent spaces to obtain a tangential vector field.

Provides an appropriate notion of finite-dimensional marginals Scalar-valued Riemannian kernels [1]: basic building block

Definition. We say that a scalar-valued function k : 7*X x T*X — R is a cross- In a frame F), this procedure defines a projected kernel:

covariance kernel if it satisfies the following key properties.
Kp(z,2') = Pyk(z,2")PL.

Figure 2: Modelling wind fields over the Earth involves placing kernels over the
manifold S2. Taking into account the correct geometry prevents warping of infer-
ence at the poles and discontinuities at the seam where we unwrap the sphere.

1. Symmetry: forall o, 8 € T* X, k(«, 8) = k(5, «) holds. ,
x: vector-valued kernel from manifold into R¢

2. Fiberwise bilinearity: for any z,2’ € X, we have k(Ao + uBe,Yer) = P..: projection matrix between T, X and the Euclidean tangent space
A (Qz, Yar) 4 pk(Be, Yar) for any ag, B, € Tp X, 7o € Tjo X and A, p € R.

Different frames ~~ different projection matrices ~~ different K
3. Positive definiteness: for any covectors aq,..,a, € T*X, we have that References

n n
Dimt Zj:l k(ai, aj) > 0. Proposition. All cross-covariance kernels can be written as projected kernels.
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by a mean vector field and a cross-covariance kernel. standard techniques such as inducing points and variational inference



