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Geometry     

What do I mean by geometry in this context?

Euclidean space Torus Sphere Hyperbolic space

Locally: manifolds look Euclidean (flat); Globally: they look very different

Many common concepts are different in non-Euclidean space!
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Geometry     

Euclidean Space Manifolds

Straight lines x + t(y − x) Geodesics

Distances x − y =∥ ∥  x  − y  ∑ ( i i)
2

d(x, y)

Getting between points x + (y − x) exp(x, log(x, y))
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Geometry in   Generative Modelling

Molecules Climate data Proteins

Robotics Lie groups Trees
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     Generative Modelling

Generically, in generative modelling we are looking to parmetrise an unknown density.
Typically we have access to samples from that density. We may want to:

Sample more items like them.
Produce a density estimator for the density.

Simple distribution

Easy to sample

⟶

A transformation

We train this

⟶

Unknown complex distributio

We have samples from this
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     Generative Modelling

Likelihood based models

VAEs
Normalizing flows
Autoregressive models
Energy based models

These typically have restricted forms on the
models, or are trained via surrogate ELBOs.

Implicit models

GANs

The adversarial losses of these models can
be very tricky to train, and we have no
access to likelihoods from the models.

What benefit do score based models bring?

Simulation-free training → Much faster than normalsing flows 👍
Stationary, regression, objective → Much more stable than GANs 👍
Empirically exceptional results with minimal tricks 👍
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   Score-Based Generative Modelling

How do score-based generative models work?

A forward process...

...which we then reverse

GIFs reproduced from https://yang-song.net/blog/2021/score/
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   Score-Based Generative Modelling

How do score-based generative models work?

The forward noising process is a Stochastic differential equation (SDE)

dX  =t b(t,X  )dt +t σ(t)dB  t

which should in the limit  converge to a stable analytic distribution. Typical score
matching uses the Ornstein-Uhlenbeck process:

t → ∞

dX  =t −X  dt +t  dB  2 t

which converges to a Gaussian. Other options exist.

The reverse can be proved to be defined by:

dY  =t −b(T − t,Y  )+σ(T−t) ∇  log p  (Y  ) dt +[ t
2

X T−t t ] σ(T − t)dB  t

Where  is the evolved density of the SDE at time .p  (X)t t

so our deep learning challenge is learning the score,  .∇  log p  (X  )X t t
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Learning the score

Ideally, we would train the score function  to match the score directly.s

∇  log p  (X  ) =X t t  E  s(t,X  ) − ∇  log p (X  )
s∈L2

argmin X  ∼p  t t
[∥ t X t t ∥2]

Clearly ths won't work... We can introduce a conditional expectation with the same
minimiser:

∇  log p  (X  ) =X t t  E  E  s(t,X  ) − ∇  log p  (X  ∣X  )
s∈L2

argmin X  ∼p  t t
[ X  ∣X  ∼p  0 t 0∣t

[∥ t X t t 0 ∥]2]

We can compute ! But sampling  is hard.∇  log p  (X  ∣X  )X t t 0 p  0∣t

∇  log p  (X  ) =X t t  E  E  s(t,X  ) − ∇  log p  (X  ∣X  )
s∈L2

argmin X  ∼p  0 0 X  ∣X  ∼p  t 0 t∣0
[∥ t X t t 0 ∥2]

Using usual probability rules we can flip the time indices!
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Learning the score

∇  log p  (X  ) =X t t  E  E  s(t,X  ) − ∇  log p  (X  ∣X  )
s∈L2

argmin X  ∼p  0 0 X  ∣X  ∼p  t 0 t∣0
[∥ t X t t 0 ∥2]

Why is this useful?

 is our data distribution.
 is analytic for the OU process.

p  0

p  t∣0

Now we just integrate over the time variable with some weighting λ(t)

∇  log p  (X  ) =X t t λ(t)E  E  s(t,X  ) − ∇  log p  (X  ∣X  ) dt
s∈L2

argmin ∫ X  ∼p  0 0 X  ∣X  ∼p  t 0 t∣0
[∥ t X t t 0 ∥2]

And with this we can learn the score, simulation free!

N.B. This objective is high variance, and requires us to take a running average of the
parameters at test time.
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Sampling the model: via SDEs

Given an SDE of the form

dX  =t b(t,X  )dt +t σ(t)dB  t

We can discretise this with steps of the form

X  =k+1 X  +k γb(t(k),X  ) +k  σ(t(k))Z  Z  ∼γ k+1 k+1 N (0, Id)

You can get error bounds on the convergence to the true SDE, and you can use this to sample
the forward and backwards SDE.

You can use Langevin correction steps to help sampling as well.

dX  =t ∇  log p  (X  )dt +X t t  dB  2 t

Targets exactly the density  when discretised.p  t
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Sampling the model: via ODEs

Given an SDE of the form

dX  =t b(t,X  )dt +t σ(t)dB  t

The following ODE has the same time-marginals

dX  =t b(t,X  ) − σ(t) ∇  log p  (X  ) dt[ t 2
1 2

X t t ]

With this ODE we can:

Use error-tolerant ODE solvers.
Apply the same methods as Continuous Normalising Flows to get a change in likelihood

for the flow, and therefore for the datapoint.
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   Score-Based Generative Modelling

How do score-based generative models work?

A forward process...

Defined by an SDE
that converges to a nicely
with an analytic reversal

...which we then reverse

By learning the score
and discretising the SDE
or solving the ODE.

GIFs reproduced from https://yang-song.net/blog/2021/score/
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Ingredient \ Space Euclidean

Forward Process OU

Base distribution Gaussian

Time reversal Cattiaux, 2021

SDE Discretisation Eular-Maruyama

Score-matching Denoising

Sample Analytic

Analytic

'Generic' Manifold Compact Manifold

p  (X  )t∣s s

∇  log p  (X  ∣X  )X  t t∣0 t 0
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Forward Process

The typical forward SDE is in fact a specific form of Langevin dynamics

dX  =t −∇  U(X  )dt +X t  dB  2 t  

converges to

t→∞
p(X) ∝ e−U(X)

Where you have , this gives a GaussianU(X) = X2

As it turns out, Langevin dynamics still hold on most manifolds

dX  =t −∇  U(X  )dt +X t  dB  2 t
M

 

converges to

t→∞
 (X) ∝d Vol  M

dp e−U(X)

Riemannian normal

U(X) = d  (X,μ)M
2

Wrapped normal

U(X) = d  (X,μ) +M
2 log ∣D exp  (X)∣μ

−1

Uniform

U(X) = 0
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Geometry in Score-Based Generative Modelling

Ingredient \ Space Euclidean 'Generic' Manifold Compact Manifold

Forward Process OU Langevin dynamics Langevin dynamics

Base distribution Gaussian Wrapped normal Uniform

Time reversal Cattiaux, 2021

SDE Discretisation Eular-Maruyama

Score-matching Denoising

Sample Analytic

Analytic

p  (X  )t∣s s

∇  log p  (X  ∣X  )X  t t∣0 t 0
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Time reversal on Euclidean space

Theorem (Time-reversal of linear SDEs on ):

Let  with be associated with the SDE .
Then the time-reversal  is associated with

Rn

(X  )  t t∈[0,T ] dX  =t b(t,X  )dt +t σ(t)dB  t

(Y  )  =t t∈[0,T ] (X  )  T−t t∈[0,T ]

dY  =t −b(T − t,Y  )+σ(T−t) ∇  log p  (Y  ) dt +[ t
2

X T−t t ] σ(T − t)dB  t

This result has been proved in a number of ways with increasingly modern tools, some
examples:

Anderson 1982 (light on rigour, stochastic control point of view)
Haussmann and Pardoux 1986 (PDE point of view)
Cattiaux et al. 2021, Theorem 4.9 (rigorous Anderson)

but none of these results apply outside the Euclidean setting  we will need to generalise
this.

→
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Time reversal on Manifolds

Theorem 1 (Time-reversal of linear SDEs on manifolds)

Let  with be associated with the SDE .
Then the time-reversal  is associated with

(X  )  t t∈[0,T ] dX  =t b(t,X  )dt +t σ(t)dB  t
M

(Y  )  =t t∈[0,T ] (X  )  T−t t∈[0,T ]

dY  =t −b(T − t,Y  )+σ(T−t) ∇  log p  (Y  ) dt +{ t
2

X T−t t } σ(T − t)dB  t
M

Why is this hard?  Geometry  Stochastic processes throws up technical difficulties with
regularity of functions.

→ ∩

How do we solve this in the end?
Following the spirit of Cattieux's proof.
State a simplified version of the theorem for Markov processes.
Verify the regularity conditions by adapting Girsanov theory to manifolds, utilising the
Nash embedding theorem.
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Ingredient \ Space Euclidean 'Generic' Manifold Compact Manifold

Forward Process OU Langevin dynamics Langevin dynamics

Base distribution Gaussian Wrapped normal Uniform

Time reversal Cattiaux, 2021 Theorem 1 Theorem 1

SDE Discretisation Eular-Maruyama

Score-matching Denoising

Sample Analytic

Analytic

p  (X  )t∣s s

∇  log p  (X  ∣X  )X  t t∣0 t 0
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Discretising SDEs on Euclidean space

Given an SDE of the form

dX  =t b(t,X  )dt +t σ(t)dB  t

We would discretise this with steps of the form

X  =k+1 X  +k γb(t(k),X  ) +k  σ(t(k))Z  Z  ∼γ k+1 k+1 N (0, Id)

On manifolds we need to generalise this a little bit
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Discretising SDEs on Manifolds

Given an SDE of the form

We would discretise this with steps of the form

dX =t b(t,X  )dt +t σ(t)dB  t
M

X  =k+1 exp X  , γb(t(k),X  ) +  σ(t(k))Z  Z  ∼( k k γ k+1) k+1 N (0, Id)
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Discretising SDEs on Manifolds

Given an SDE of the form

We would discretise this with steps of the form

These are known as Geodesic Random Walks

dX =t b(t,X  )dt +t σ(t)dB  t
M

X  =k+1 exp X  , γb(t(k),X  ) +  σ(t(k))Z  Z  ∼( k k γ k+1) k+1 N (0, Id)

These we well known, but we produce a new error control theorem for time-inhomogenous
SDEs.
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Ingredient \ Space Euclidean 'Generic' Manifold Compact Manifold

Forward Process OU Langevin dynamics Langevin dynamics

Base distribution Gaussian Wrapped normal Uniform

Time reversal Cattiaux, 2021 Theorem 1 Theorem 1

SDE Discretisation Eular-Maruyama GRW GRW

Score-matching Denoising

Sample Analytic

Analytic

p  (X  )t∣s s

∇  log p  (X  ∣X  )X  t t∣0 t 0
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Denoising Score-matchings on Manifolds

Fortunately the denoising score-matching objective carries over with no trouble to manifolds.
That is

∇  log p  (X  ) =X t t λ(t)E  E  s(t,X  ) − ∇  log p  (X  ∣X  ) dt
s∈L2

argmin ∫ X  ∼p  0 0 X  ∣X  ∼p  t 0 t∣0
[∥ t X t t 0 ∥2]

Our issue comes with evaluating  and sampling ∇  log p  (X  ∣X  )X  t t∣0 t 0 p  (X  ∣X  )t∣0 t 0

For the wrapped Gaussian SDE, we don't have a closed form for sampling or evaluation.
For Brownian motion SDE, this is the heat kernel

 has approximations.∇  log p  (X  ∣X  )X  t t∣0 t 0

Sampling analytically is still difficult.
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Approximating   on Manifolds∇  log p  (X  ∣X  )X  t t∣0 t 0

Strum-Louiville (compact only)

If we have the eigenpairs  of the
Laplace-Beltrami operator  then

(λ  ,ϕ  )j j

Δ  M

p  (X  ∣X  ) =t∣0 t 0

 e ϕ  (X  )ϕ  (X  )∑j∈N
−λ  ti

j 0 j t

Varadhan

Alternatively we have in the small time limit:

lim  ∇  log p  (X  ∣X  )t→0 X  t t∣0 t 0

= exp (X  ,X  )/t−1
t 0
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Implicit Score Matching on Manifolds [Hyvärinen 2005]

What if we can't approximate the conditional score?

E  ∇  log p  (X  ) − s(X  )X  ∼p  t t
[∥ X t t t ∥2]

= E  C − 2 ∇  log p  (X  ), s(X  ) + s(X  )X  ∼p  t t
[ ⟨ X t t t ⟩ ∥ t ∥2]

= E  C − 2/p  (X  ) ∗ ∇  p  (X  ), s(X  ) + s(X  )X  ∼p  t t
[ t t ⟨ X  t t t t ⟩ ∥ t ∥2]

= E  C + 2/p  (X  ) ∗ p  (X  ), div(s)(X  ) + s(X  )X  ∼p  t t
[ t t ⟨ t t t ⟩ ∥ t ∥2]

= E  C + 2 div (s)(X  ) + s(X  )X  ∼p  t t
[ t ∥ t ∥2]

= E  C + 2 div (s)(X  ) + s(X  )X  ∼p  ,X  ∼p  (X  ∣X  )0 0 t t∣0 t 0 [ t ∥ t ∥2]
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Implicit Score Matching on Manifolds [Hyvärinen 2005]

= E  C + 2 div (s)(X  ) + s(X  )X  ∼p  ,X  ∼p  (X  ∣X  )0 0 t t∣0 t 0 [ t ∥ t ∥2]

Using a divergence theorem for non-compact manifolds (e.g. Gaffney 1954) we can show an
identical result. with some regularity conditions...

That is:

∇  log p  (X  ) =X t t   λ(t)E  2 div (s)(X  ) + s(X  ) dt
s∈L2

argmin ∫0
T

X  ∼p  ,X  ∼p  (X  ∣X )0 0 t t∣0 t 0 [ t ∥ t ∥2]

And the usual Hutchinson trace trick estimator can be used [Song et al. 2019].
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Loss Approximation Loss function Requirements Complexity

DSM

None

Truncation Expansion

Varhardan

ISM

Deterministic

Stochastic

p  t∣0 exp−1

E  s(X  ) − ∇  log p  (X  ∣X  )  [ t X  t t∣0 t 0
2
] O(1)

E s(X  ) − ∇  logS  (X  ,X  )[∥ t Xt J t 0 ∥2] O(1)

E  s(X  ) − exp  (X  )/t  [ t X  t

−1
s ] O(1)

E s(t,X  ) + 2 div(t, ⋅)(X  )[∥ t ∥2
t ] O(d)

E s(t,X  ) + 2ε div(t, ⋅)(X  )ε[∥ t ∥2 ⊤
t ] O(1)
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Ingredient \ Space Euclidean 'Generic' Manifold Compact Manifold

Forward Process OU Langevin dynamics Langevin dynamics

Base distribution Gaussian Wrapped normal Uniform

Time reversal Cattiaux, 2021 Theorem 1 Theorem 1

SDE Discretisation Eular-Maruyama GRW GRW

Score-matching Denoising/Implicit Denoising/Implicit Denoising/Implicit

Sample Analytic Discretise SDE Discretise SDE

Analytic  - Use ISM Strum-Louiville
& Varadhan Approx.

p  (X  )t∣s s

∇  log p  (X  ∣X  )X  t t∣0 t 0
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Experimental Validation
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Baseline Methods

Riemannian Continuous Normalising Flows (RCNFs) [Mathiue & Nickel 2020]

Map a simple density under a vector field flow to a complex density.
Compute the change in density via the log-det-Jacobian of this flow.
Train with maximum likelihood.
Requires full forward/backward simulation to train.

Moser Flows [Rozen et al. 2020]

Specify the form for the vector field flow as the linear interpolation of the start/end
distributions.
👍 Exploit a property to get simulation-free likelihoods for training.
👎 Require a regulariser that integrates over the whole domain.
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Earth-Science Datasets

Volcanoes Earthquakes Floods Fires

Method Volcanoes Earthquakes Floods Fires

Mixture of Kent

Riemannian CNF

Moser Flow

Sterorgraphic SGM

Riemannian SGM

Dataset Size 827 6120 4875 12809

−0.80  ±0.47 0.33  ±0.05 0.73  ±0.07 −1.18  ±0.06

−6.05  ±0.61 0.14  ±0.23 1.11  ±0.19 −0.80  ±0.54

−4.21  ±0.17 −0.16  ±0.06 0.57  ±0.10 −1.28  ±0.05

−3.80  ±0.27 −0.19  ±0.05 0.59  ±0.07 −1.28  ±0.12

−4.92  ±0.25 −0.19  ±0.07 0.45  ±0.17 −1.33  ±0.06
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High-Dimension Torii
Place a 2-mode mixture-of-Gaussian ditribution on .S  1

n
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Synthetic  dataSO(3)
Place a M-mode mixture-of-Gaussian ditribution on .SO(3)

Method
LL NFE ( ) LL NFE ( ) LL NFE ( )

Moser Flow

Exp-wrapped SGMs

RSGM

M = 16 M = 32 M = 64

×103 ×103 ×103

0.85  ±0.03 2.3  ±0.5 0.17  ±0.03 2.3  ±0.9 −0.49  ±0.02 7.3  ±1.4

0.87  ±0.04 0.5  ±0.1 0.16  ±0.03 0.5  ±0.0 −0.58  ±0.04 0.5  ±0.0

0.89  ±0.03 0.1  ±0.0 0.20  ±0.03 0.1  ±0.0 −0.49  ±0.02 0.1  ±0.0
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Synthetic Hyperbolic Distributions

Target Exp-wrapped SGM RSGM
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Research Outline

Manifolds with Boundary
TMLR 2023

Better Manifolds with Boundary
Arxiv 2023

&

Fields and Paths on Manifolds
Arxiv 2023

When our spaces have boundaries, normal SDEs will escape.
Replace these with log-barrier and reflected SDEs.
Investigate these and show how to make them work in practise.

Reflected SDEs are expensive to discretise in practise.
Introduce a new sampling scheme based on Metropolis sampling.
Show that this scheme works effectivly and very fast in practise.

What of we want to think not about distribution on manifolds but:
Distributions on functions on manifolds.
Distributions on paths on manifolds.
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Thanks for listening!
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Thanks for listening!
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